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Abstract

Development of new products often relies on the discovery of novel molecules.

While conventional molecular design involves using human expertise to propose,

synthesize, and test new molecules, this process can be cost and time intensive, lim-

iting the number of molecules that can be reasonably tested. Generative modeling

provides an alternative approach to molecular discovery by reformulating molecu-

lar design as an inverse design problem. Here, we review the recent advances in

the state-of-the-art of generative molecular design and discusses the considerations

for integrating these models into real molecular discovery campaigns. We first

review the model design choices required to develop and train a generative model

including common 1D, 2D, and 3D representations of molecules and typical gener-

ative modeling neural network architectures. We then describe different problem

statements for molecular discovery applications and explore the benchmarks used

to evaluate models based on those problem statements. Finally, we discuss the

important factors that play a role in integrating generative models into experimen-

tal workflows. Our aim is that this review will equip the reader with the informa-

tion and context necessary to utilize generative modeling within their domain.
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1 | INTRODUCTION

The discovery of new molecules and materials is needed to address important challenges in chemistry ranging from treating
complex diseases to tackling climate change. Conventionally, this process relies on human expertise to propose, synthesize,
and test new molecules. While many of the most important discoveries in scientific history have been made in this fashion,
conventional discovery is inherently cost and time intensive, limiting the number and diversity of molecules that can be
reasonably explored. It has been estimated that the number of compounds that have ever been synthesized lies around 108
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while the total number of theoretically feasible compounds lies between 1023 and 1060.1,2 Thus, conventional discovery
methods are only capable of exploring a small fraction of chemical space. There is a critical need to develop methods that can
efficiently explore chemical space to identify molecules capable of solving important problems in chemistry and engineering.

Generative models offer a promising solution. Instead of designing molecules using human expertise, generative
models leverage recent advances in deep learning to address the inverse molecular design problem: given a desired set
of properties, what is the set of molecules that will satisfy those properties? By identifying a function that maps a set of
properties to a set of structures, generative models can rapidly identify diverse sets of molecules that are highly opti-
mized for specific applications. Since their recent introduction, there has been explosion in the number and variety of
generative models that have been applied to molecular design. These models vary in their molecular representation,
architecture, and the type of molecular design problems they address. Further, to facilitate comparisons between the
growing number of models, a number of benchmarks have been recently proposed that evaluate models based on
factors such as distribution learning and chemical diversity and novelty.3,4 A number of excellent reviews have been
written to summarize the development of this field.5–10

Despite these remarkable advances, there are relatively few examples of applying generative models to discover mol-
ecules for concrete applications. Most studies focus on optimizing molecules for computational metrics such as logP
(logarithm of the partition coefficient) or QED11 (quantitative estimate of drug-likeliness) and few published studies
involve experimentally testing the identified lead molecules. Thus, there are clearly gaps that prevent generative models
from reaching their full potential in molecular discovery.

In this review, we provide a concise summary of the recent advances in the state of the art of generative molecular
design, describing the considerations for integrating these models into real molecular discovery campaigns, and dis-
cussing the remaining challenges that must be solved for their promise to be fully realized. Our aim is that this
review will equip the reader with the information necessary to fully leverage generative modeling in their field of
expertise.

2 | BACKGROUND

2.1 | Representation of molecules

The strength of neural networks lies in their ability to take in a complex input representation transform it into a latent
representation needed to solve a particular task. In this way, the choice of input representation plays a key role in
governing how the model learns information about the molecule. Input representations often fall into one of three cate-
gories: (1) one-dimensional (e.g., string-based representations), (2) two-dimensional (e.g., molecular graphs), and
(3) three-dimensional representations (e.g., coordinate-based).

2.1.1 | One-dimensional representations

The most common type of one-dimensional representation is referred to as SMILES (Simplified Molecular Input Line
Entry System),12 a simple string-based representation that transforms a molecule into a sequence of characters based
on predefined atom ordering rules. Representing a molecule as a sequence of characters has proven advantageous
because it enables the reapplication of neural network architectures that have been previously developed for lan-
guage processing. In particular, by representing molecules as sequences, prior work13–20 trained recurrent neural net-
works as generative models21,22 that generate the SMILES strings of molecules. Unfortunately, these methods are
prone to generate invalid SMILES that cannot be converted to molecular structures because they ignore the complex
grammar of the SMILES notation. To remedy this issue, Kusner et al. and Dai et al. enhanced the recurrent neural
network with syntactic constraints of the SMILES grammar. However, these methods still fail to capture chemical
validity and often generate invalid SMILES strings.23,24 Given the complication of SMILES notation, Krenn et al.
designed an improved string representation called SELFIES (Self-Referencing Embedded Strings).25 Based on the
SELFIES representation, a recurrent neural network model can be trained generate molecules that are 100% valid. It
is important to note, however, that validity is defined with respect to valency rules. As a result, molecules that are
valid may not necessarily be stable.
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2.1.2 | Two-dimensional representations

Molecules can alternatively be represented in neural networks as graphs, with nodes and edges corresponding to atoms
and bonds, respectively. Graphical representations are powerful in that they directly capture the connectivity between
atoms, while in one-dimensional representations this information must inferred by the model. Unfortunately, graphs
have also proven more difficult generate than sequences and, as a result, there have been a number of efforts aimed at
developing neural network architectures for generating realistic molecular graphs. One strategy is to generate molecu-
lar graphs by outputting the atoms and the adjacency matrix of the graphs simultaneously.26–28 In contrast, You et al.,29

Li et al.,30 Samanta et al.,31 and Liu et al.32 developed generative models that decode molecules sequentially, atom-by-
atom. Jin et al.33 took a related approach, grouping atoms into substructures and developing a model that generates
molecules substructure-by-substructure (also sequentially). These substructures consisted of either two atoms
connected by a bond or all of the atoms in a ring (e.g., a phenyl ring). Their model first generated a junction tree with
substructures as nodes and then predicted how the substructures should be attached to each other. Jin et al.34 later
extended this approach to a hierarchical model, allowing the use of larger substructures. Their model outperformed
atom-by-atom approaches on multiple molecule generation tasks, including polymer generation, drug-likeness optimi-
zation, and Dopamine Receptor D2 binding affinity optimization.

2.1.3 | Three-dimensional representations

Lastly, molecules can be represented in three dimensions using point clouds—where each atom corresponds to a point
in space—in order to capture not only covalent atom connectivity, but also information about the conformational pref-
erences of the molecule. For example, Gebauer et al.35 generated molecules sequentially by placing atoms in Cartesian
coordinates. Simm et al.36 adopted a similar approach that generated molecules atom-by-atom based on internal coordi-
nates. One disadvantage to using these methods for molecular discovery applications is that to accurately capture physi-
cal properties it is necessary to consider more than one conformer of a given molecule. A second disadvantage to these
approaches is that they typically use energy minimization with force fields to generate conformations for molecules in
the training set, which can be time-consuming, especially for large, flexible molecules. Recently, researchers have
explored replacing/supplementing traditional conformer generation methods37,38 with three-dimensional generative
models39–41 trained on large datasets of conformer ensembles,42,43 which can be used to reduce the computational
expense of obtaining three-dimensional training data.

2.2 | Model architectures

The success of a given deep neural network depends greatly on its architecture—the types of layers that comprise the
network and the way in which those layers are arranged. Deep generative models for molecular discovery can be bro-
ken up into three classes of neural network architectures: variational autoencoders (VAEs), generative adversarial
networks (GANs), and normalizing flow models, illustrated in Figure 1. Each architecture differs in the strategy it
uses to learn a latent representation of the molecule. Both VAEs and normalizing flow models aim to maximize the
likelihood of the training data. VAEs approximately maximize likelihood using variational inference techniques,44

while normalizing flow models maximize the likelihood exactly by requiring the model to be invertible. In contrast,
GAN-based approaches formulate molecule generation as a minimax game, where a discriminator model learns to
distinguish the real data from the fake samples that are produced by a generator model. Here we will briefly describe
how these methods work and the ways that they have been used for molecular discovery applications. For greater
detail on these methods (including mathematical formulations), we refer the reader to previous reviews and
resources.5,45

2.2.1 | Variational autoencoders

VAEs are generative models that consist of an encoder, which learns to map a molecule into a continuous embedding,
followed by a decoder, which learns to reconstruct a molecule from its learned embedding.46 VAEs are trained using a loss
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function consisting of two terms: (1) a reconstruction loss that forces the decoder to recover the correct molecule from its
embedding and (2) a Kullback–Leibler (KL) divergence term that regularizes the distribution of learned molecular embed-
dings such that the distribution of generated molecules closely resembles the training distribution. In the context of molecule
generation, VAEs have been used to generate SMILES strings13,19,23,24 and molecular graphs.32,33,47,48

2.2.2 | Generative adversarial networks

GANs are generative models that consist of a generator, which learns to generate a molecule from Gaussian noise, and
a discriminator, which learns to identify molecules as either real (belonging to a training dataset) or fake (constructed
by the generator). These two networks are trained to compete against one another, with the generator learning to
generate sufficiently realistic molecules to trick the discriminator, and the discriminator learning to tell the difference.
GANs have been successful at generating highly realistic images,49 in part because adversarial training enables the
model to learn a more nuanced definition of what makes an example realistic than is accessible to VAEs through their
loss functions.

Recently, researchers have adapted this approach to generating molecules, represented as sequences or graph.50–52

For example, Guimaraes et al.53 trained a GAN to generate SMILES strings and, as described earlier, De Cao and Kipf26

and Ma et al.27 trained GANs to generate the adjacency matrix of a molecular graph. Nevertheless, generating
sequences and graphs using GANs remains challenging because constructing sequences and graphs requires
backpropagating the gradient through discrete choices.

FIGURE 1 Comparison of the major neural network architectures used in generative modeling: Variational autoencoders (VAEs, top),

generative adversarial networks (GANs, middle), and normalizing flow models (bottom)
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2.2.3 | Normalizing flow models

Normalizing flow models generate molecules by learning a series of invertible transformations between a prior distribu-
tion (e.g., a Gaussian distribution) and real-world high-dimensional data such as molecules. The major advantage of
flow-based models over VAEs is that the invertible mapping allows the calculation of the exact data likelihood. This
advantage motivated Zang et al.,54 Shi et al.,55 and Madhawa et al.56 to apply flow-based models to molecule generation.
For example, Shi et al. developed an autoregressive flow-based model called GraphAF, which outperformed variational
autoencoder based methods on logP optimization tasks.

2.2.4 | Miscellaneous

Beyond the three major generative model classes, researchers have explored other types of models for tasks that are
closely related to molecular design. For instance, diffusion-based models have been applied to molecular conformation
generation,57 where a model learns to iteratively modify pairwise atomic distances in order to generate stable conforma-
tions. While the full combination of a graph and a conformer diffusion model is not yet available, they can be readily
combined. In addition, Bradshaw et al.58,59 has proposed reaction-based models for molecular design in order to gener-
ate molecules that are easy to synthesize. We will further discuss this type of approach in Section 3.

2.3 | Formulating the molecular generation problem

There are a wide range of reasons one might be interested in discovering new molecules. A first step in applying genera-
tive modeling to molecular generation is to formulate these distinct applications as concrete problem statements, for
example, we are interested in discovering molecules with X properties, subject to Y constraints. Broadly, molecular gen-
eration problem statements fall into three classes: (1) unconstrained molecular generation, (2) property-constrained
molecular generation, and (3) structure-constrained molecular generation.

2.3.1 | Unconstrained molecular generation

The goal of unconstrained molecular generation is to generate diverse and novel molecules without any property con-
straints (except chemical validity). This is valuable for exploratory molecular generation campaigns, which focus on
identifying interesting and unusual chemistries. For this class of problems, the generative model aims to learn the
general distribution of molecules in chemical space (e.g., what do molecules typically look like?). To learn this broad
distribution, the generative model is typically trained on a large databases of compounds such as ChEMBL60 and
ZINC.61 The distribution is then learned by training the model to maximize the likelihood of all the compounds in the
training set. Unconstrained generative models are typically evaluated based on the chemical validity, novelty, and
uniqueness of generated compounds. For example, Segler et al.17 trained a recurrent neural network to generate mole-
cules without any property constraints. Their goal was to use generated molecules to enrich existing molecular libraries
for virtual screening.

2.3.2 | Property-constrained molecular generation

Property-constrained molecular generation extends the previous formulation by adding constraints on the generated
molecules. In this case, a model must generate compounds that are both chemically valid and have specific, desirable
properties such as good solubility, low toxicity, or high potency. Since it is infeasible to experimentally validate every
generated compound, it is necessary to train a property predictor to assess compound properties in silico, also known as
quantitative structure–activity relationship (QSAR) model. The property predictor is trained on a separate dataset of
molecules labeled with their properties (e.g., IC50/EC50 for potency). After training, the property predictor is used to
estimate whether a generated molecule satisfies the given constraints.
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In this way, the generative model learns to generate compounds that are predicted to satisfy the constraints via the
property predictor. This task is often cast as a discrete optimization problem and can be solved by reinforcement learn-
ing, Bayesian optimization, or genetic algorithms. In reinforcement learning, a model is trained to maximize the
expected reward defined based on the output of the property predictor. For instance, Olivecrona et al.14 first pretrained
a recurrent neural network on over 1 million drug-like molecules from ChEMBL to generate SMILES strings. They sub-
sequently trained a property predictor to assess Dopamine Receptor D2 (DRD2) binding affinity of new compounds.
Finally, they used reinforcement learning to fine-tune their generative model to maximize the predicted DRD2 binding
affinity. Popova et al.15 adopted a similar strategy to train a generative model that maximizes the inhibitory activity
against Janus protein kinase 2. You et al.29 and Zhou et al.62 also used reinforcement learning to generate drug-like
compounds with high QED scores. Their method operated on molecular graphs instead of SMILES strings and learned
to iteratively add or remove atoms and bonds from a molecule in order to maximize the expected reward.

Alternatively, Bayesian optimization methods13,23,33,63 can be used to cast the discrete optimization problem into a
continuous optimization problem by learning a continuous embedding of molecules. These methods involve first train-
ing a variational autoencoder to map discrete molecules into a continuous embedding space and then training another
neural network to predict the chemical property of the original molecule from its continuous embedding vector. They
then apply Bayesian optimization in the continuous embedding space to find an embedding with the best associated
property score. The discovered embedding is decoded into a discrete molecule by a decoder network.

Finally, genetic algorithms solve the discrete optimization problem by searching for favorable compounds via muta-
tion of molecules. A genetic algorithm consists of two components: a set of mutation rules and a fitness function. The
fitness function is a weighted interpolation of predicted property scores and penalty scores that penalizes long-surviving
molecules. The additional penalty term encourages the model to explore a diverse set of molecules. New compounds
are derived by applying mutation rules to existing molecules. Old molecules with low fitness scores are removed in each
iteration. Nigam et al. applied genetic algorithms to design molecules with high logP scores.64 Their fitness function
was parameterized as a neural network. Ahn et al.65 extended this approach by learning a policy function to perform
mutations over molecules rather than using a fixed set of mutation rules. It is important to note that while many studies
use logP as convenient metric to use for method development, it is an artificial task that cannot be directly tied to any
real application.

2.3.3 | Structure-constrained molecular generation

The goal of structure-constrained molecular generation is to modify the structure of a candidate molecule in order to
improve its properties. This approach is useful for molecular generation campaigns where lead candidates with desir-
able properties have already been identified and the goal is to explore closely related molecules. In the pharmaceutical
industry, this process is analogous to lead optimization.66 An example of structure-constrained optimization is the work
published by Jin et al., 201967 and 202034 which formulated lead optimization as a graph-to-graph translation problem,
where the model learned to translate input molecules into improved molecules. The model was trained on a dataset of
molecular pairs, with each pair containing two similar molecules, one less optimal than the other. At test time, the
translation model learned to generate analogs of a given molecule with better properties.

Another strategy for structure-constrained molecular generation involves constraining the output molecule to con-
tain a specific scaffold or fragment. Langevin et al.68 and Li et al.69 built generative models that output drug molecules
with a specific scaffold. The scaffolds were usually extracted from existing drugs with good biological properties. Jin
et al.,70 Podda et al.,71 Imrie et al.,72 and Green et al.73 similarly developed models that learned to generate molecules
with specific fragments. In this approach, models were first initialized with certain fragments. Models then learned to
connect the given fragments into a coherent molecule by a series of edge selection and bond-type prediction steps.

2.4 | Benchmarks for generative models for molecular design

As has been seen in the previous sections, a large number of generative models with a variety of network architectures
have been published for molecular generation. In order to rigorously determine whether one model is better or worse
than another it is necessary to develop benchmarking metrics that can be evaluated for models trained on publicly
available datasets. As evidenced by the different types of molecular generation problem statements, there are a variety
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of goals for generative models and, as such, it is necessary to use benchmarking metrics that are representative of these
goals. Two recent benchmarking sets, MOSES3 and Guacamol,4 define such metrics for both unconstrained molecular
generation and for goal-oriented molecular generation (including both property constrained and structure constrained
molecule generation, shown in Table 1). It is important to note that while these benchmarks are useful for comparing
generative modeling approaches, they do not cover all of the necessary aspects of molecular discovery.75

2.4.1 | Unconstrained molecular generation benchmarks

The goals for unconstrained molecular generation are to generate molecules that are (1) valid and unique, (2) based on
a chemical distribution that matches the training set, and (3) novel and diverse. Molecule validity is typically measured
with respect to valency and bonds using RDKit's molecular structure parser. A more stringent metric for validity is
defined as the percent of molecules that pass a given set of rule-based filters such as Walters's rd_filters
implementation,76 a filter set that includes heuristic rules such as a maximum ring size. One caveat to using rule-based
filters is that they are typically defined based on realistic molecules and can miss unusual functional groups produced
by generative models. A model's generated chemical distribution can be measured based on KL divergence, a metric
that measures how well a given probability distribution approximates a second distribution. Chemical distribution can
also be evaluated by comparing the distributions of common molecular properties such as molecular weight or logP in
both the training and the test sets. The diversity of generated molecules is can be measured via a novelty metric, Frag-
ment and Scaffold similarity (which use BRICS fragments77 and Bemis-Murcko scaffolds78 respectively), or Frechet

TABLE 1 Common generative modeling benchmarks and their definitions

Benchmark Definition Goal type
Benchmark
set

Validity Percent of valid molecules with respect to bonds/valency, evaluated using
RDKit's molecular structure parser

Unconstrained MOSES,
Guacamol

Filters Percent of molecules passing a set of rule-based filters Unconstrained MOSES,
Guacamol

Uniqueness Percent of unique molecules Unconstrained MOSES,
Guacamol

KL divergence Statistic capturing the difference between the generated molecular
distribution and the training set distribution

Unconstrained Guacamol

Molecular properties
distributions

Comparison between generated and training set property distributions such
as molecular weight or logP

Unconstrained MOSES

Novelty Percent of molecules not present in training set Unconstrained MOSES,
Guacamol

Fragment similarity Metric comparing distributions of BRICS fragments in the generated and
training sets

Unconstrained MOSES

Scaffold similarity Metric comparing distributions of Bemis-Murcko scaffolds in the generated
and training sets

Unconstrained MOSES

Chemical space
coverage

Extent to which generated molecules cover the chemical space of the
GDB13 dataset

Unconstrained Zhang et al.74

Similarity Generate molecules that are similar to a target molecule removed from the
training data

Goal-oriented Guacamol

Rediscovery Rediscover molecules removed from training data Goal-oriented Guacamol

Isomer identification Generated molecules that follow a simple (unknown) pattern Goal-oriented Guacamol

Median molecule
discovery

Generate molecules that maximize similarity to multiple molecules Goal-oriented Guacamol

Calculated property
optimization

Generate molecules with optimum calculated property values such as LogP
or QED

Goal-oriented Guacamol
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ChemNet Distance.79 Finally, Zhang et al.74 recently proposed a metric that compares models based on chemical space
coverage of a large reference dataset, GDB13.

2.4.2 | Goal-directed molecular generation benchmarks

With goal-directed generative models, the aim is to discover molecules with specific properties. To test a model's ability
to generate molecules with specific properties in an easy and reproducible fashion, Guacamol proposes benchmarks
based on similarity, rediscovery, isomer identification, and median molecule generation.4 The goal of the similarity
benchmark is to generate molecules that are similar to a target molecule that was removed from the training set. The
rediscovery benchmark is related to similarity, with the goal of rediscovering molecule(s) that have been removed from
the training set. The isomer benchmark involves generating molecules that follow a simple pattern (which is a priori
unknown). Finally, the goal of the median molecule discovery benchmark is to generate molecules to maximize similar-
ity to multiple molecules. In addition, properties that can be easily measured computationally, such as logP or QED are
commonly used as additional, goal-oriented benchmarks. It is important to note that many of these benchmarks have
been developed or selected in order to measure model performance quickly and reproducibly. As a consequence, objec-
tives (most notably the maximization of logP) are highly artificial and are not closely related to any real application.

3 | PRACTICAL CONSIDERATIONS FOR GENERATING MOLECULES FOR
SPECIFIC APPLICATIONS

As described in the previous section, a variety of generative models have been developed and explored theoretically and
computationally. Despite this, there remain relatively few examples of using generative models in real molecular dis-
covery campaigns. This is because these campaigns are often characterized by a series of additional hurdles, making it
difficult to directly deploy generative models for concrete applications. In this section, we will discuss these hurdles, in
particular focusing on (1) the multi-objective nature of real molecular design problems, (2) the requirement that discov-
ered molecules must be synthesizable, and (3) the challenges associated with error-prone predictive models.

3.1 | Real molecular design problems are generally multi-objective in nature

In applied settings, we are often interested in discovering molecules that are more optimal than any previously known
molecule with respect to one or more properties. In addition to these properties, there are usually additional objectives
or constraints that are secondary to the main design goal but are equally necessary for the molecule to be useful for a
given application. To illustrate this, consider the problem of designing a drug molecule: the primary objective may be to
discover a lead molecule that binds to a target with high affinity, but at the same time it is necessary for that molecule
be soluble, have limited off-target effects, and be synthetically accessible. While an expert medicinal chemist might
intuitively consider each of these additional constraints when designing new molecules, generative models, which aim
to discover diverse and novel sets of molecules, will attempt to explore chemical space thoroughly. This means that any
secondary objectives or constraints that have not been captured in the modeling approach will be ignored, reducing the
model's usefulness in discovering new molecules. Therefore, it is critical to consider how the relevant secondary
objectives will be captured when applying generative models to real molecular discovery scenarios. Additional common
secondary objectives include toxicity, stability (often with respect to temperature, light, and/or time), phase behavior,
solubility, or corrosivity.

There are two types of approaches that one can use to account for multiple objectives in generative molecular
design: explicit multi-objective optimization and structure-guided multi-objective optimization, shown in Figure 2.

3.1.1 | Explicit multi-objective optimization

Explicit multi-objective optimization involves explicitly defining and optimizing over every property that is rele-
vant to the application. This is most often accomplished by considering each property using a separate predictive
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model or evaluator80–82 and optimizing over an objective function that combines these properties. Alternatively, if
the property can be attributed to a specific scaffold within the molecules, the molecule can be optimized by incor-
porating the relevant scaffolds into the generative procedure.70,83 By explicitly defining each objective, the user can
directly control the relative importance of each objective, allowing this approach to be easily tailored to different
applications.

One challenge with this approach, however, is that it requires an automated way for predicting or obtaining every
relevant property without human intervention. This can become problematic for properties with smaller public datasets
such as toxicity or phase behavior, for which it might not be feasible to train high accuracy predictive models. Addition-
ally, it is difficult to train predictive models for properties that are hard to define. To illustrate this, consider the case
where we would like to evaluate whether a molecule is synthetically feasible in an automated fashion. While it might
seem like a good approach to simply determine whether or not a synthetic pathway can be found for that molecule
using computer aided synthesis planning (CASP), this strategy does not consider how many byproducts might form or
how difficult it might be to characterize or separate those byproducts. In this way, fully evaluating synthetic feasibility
requires considering a complex combination of a number of factors, making it hard to predict in an automated fashion.

3.1.2 | Structure-guided multi-objective optimization

Structure-guided multi-objective optimization implicitly holds some properties constant using structural constraints. As
described earlier, this can be accomplished via candidate-based67,84 or scaffold-based optimization,68–71,73,85–88 in which
previously identified starting candidate molecules or scaffolds with desirable properties are improved with respect to
one or more additional properties. In the case of the previously described drug design problem, we might begin with a
candidate that is soluble and can be easily synthesized but is only moderately efficacious. In this case, one might train
the generative model to improve drug efficacy with the goal of maintaining each of the other desirable properties.
Unlike explicit multi-objective optimization, the user does not need to define each of the secondary objectives, making
it straightforward to consider difficult-to-define objectives. Such implicit multi-objective optimization can also be
accomplished by simply limiting exploration in chemical space to molecules that are similar to molecules used in
training,16,75 though this does limit the diversity of the generated molecules.

+

Single objec�ve  
op�miza�on

Objec�ve func�on

Explicit mul�-
objec�ve  

op�miza�on

Structure-guided  
mul�-objec�ve  

op�miza�on

True objec�ves

FIGURE 2 Comparison of single objective, explicit multi-objective, and structure-guided multi-objective optimization. Explicit multi-

objective optimization involves combining multiple objectives (colored) to obtain an objective function, while structure-guided optimization

involves implicitly considering secondary objectives (gray) by limiting the search space
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3.2 | Molecules designed using generative models must be synthesizable

One of the most universal requirements of molecules discovered for real applications is that they must be synthesizable.
The most straightforward way to consider synthesizability in a generative modeling problem is to treat it explicitly as
an additional objective. As described earlier, this requires an automated approach for evaluating synthesizability with-
out human intervention. While CASP tools (which predict synthetic pathways for a given molecule) can be used to
approximate this, they are often too computationally expensive to be used directly for explicit optimization. Instead, a
number of scores have been proposed to quickly evaluate synthesizability in an automated fashion.

One of the earliest examples of such a score is called the synthetic accessibility (SA) score proposed by Ertl and
Schuffenhauer,89 which estimates synthesizability by penalizing molecules containing nonstandard structural fea-
tures and prioritizing molecules with features that resemble representative molecules from PubChem. Later,
Fukunishi et al.90 further developed this score by expanding the set of representative molecules to include
ChEMBl, ZINC, and LigandBOX. More recently, Coley et al.91 proposed the synthetic complexity (SC) score, which
estimated with the expected number of reaction steps required for synthesis. Finally, Thakkar et al.92 recently pres-
ented the retrosynthetic accessibility (RA) score, which estimates synthesizability by using a machine learning
model trained based on CASP predictions, thereby circumventing the computational expense of directly using a
CASP model.

Importantly, each of these scores is only an approximate measure of synthetic feasibility and, therefore, each
measurement has advantages and disadvantages in the context of molecular discovery. The SA score relies on iden-
tifying commonly occurring fragments within a given molecule and can therefore be easily “tricked” by complex
molecules containing many reasonable looking fragments. The SC score focuses on measuring synthetic complex-
ity, rather than feasibility and so it has been shown to correlate better with the length of the predicted synthesis
pathway, but poorly with feasibility (when benchmarked against CASP models).93 The RA score directly predicts
synthetic feasibility with respect to a CASP model as a function of the full molecular structure, and therefore per-
forms better than the other scores when CASP models are used as a reference. It is important to note, however,
because the RA score directly relies on a given CASP model, any shortcomings of that model will also be present in
the RA score.92 In this way, each of the currently developed scores capture some (but not all) aspects of synthetic
feasibility. They can be useful for guiding molecular discovery using generative modeling but will likely still lead
to some synthetically infeasible molecules.

One alternative to treating synthesizability as a secondary objective is to use a generative model that directly inte-
grates CASP tools into the generation process.58,59,94–97 For example, instead of simply generating individual molecular
graphs, Bradshaw et al.58 generates synthetic pathways and then optimizes the final product for specific properties
using a hill-climbing algorithm. A related approach proposed by Gottipati et al.97 uses Policy Gradient for Forward Syn-
thesis (PGFS) wherein an agent learns to apply chemical reactions to commercially available molecules to explore
chemical space. Reinforcement learning (RL) can then be used to guide this agent toward molecules that are optimized
for specific properties. These approaches inherently generate a synthetic pathway concurrently with the optimized mol-
ecule making them well suited to enforcing synthesizability.

One caveat to this class of models is that they are closely integrated with CASP models, which can only approxi-
mately predict retrosynthetic pathways and, consequently, any limitations in the CASP model will also be present in
the generative model. For example, if a certain class of reactions necessary for synthesizing a given class of molecules is
missing from the CASP training data, it may not be possible for the generative model to find a pathway to any mole-
cules in that class. In this instance, the model will deem that class of molecules synthetically infeasible, when they
may, in fact, be important for the application. In this way, requiring that molecules must be discoverable via a CASP
model may limit the diversity of chemistries accessible during generation.

3.3 | Generative modeling workflows rely on predictive models with limited certainty

As described previously, generative models rely on predictive models to optimize molecules for specific properties. The accu-
racy of these predictive models is limited by the size and accuracy of the training datasets. For properties for which the train-
ing data comes from simulations or experiments, the training data is likely to contain noise and/or bias, preventing the
model from learning the true structure–property relationship. Additionally, for properties for which there is limited training
data, the available data may not be sufficient to constrain the model close to the target function. In this way, it is important
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to consider how generative models behave when paired with error-prone predictive models. For a more detailed discussion
of uncertainty quantification in deep learning we refer the reader to other resources.98–104

The most straightforward way deal with error-prone predictive models in generative molecular discovery is to use
Bayesian optimization methods.13,23,33,63 Bayesian optimization methods replace discrete predictions with continuous
probability distributions allowing the use of sampling functions that balance exploration and exploitation. For genera-
tive models that use discrete optimization, uncertainty must be accounted for through the use of external uncertainty
quantification metrics such as ensemble variance105 or Monte Carlo (MC) dropout.106 In the absence of uncertainty
handling, error-prone predictions can mislead generative models—which aim to discover novel and diverse
molecules—to explore regions of chemical space that are poorly captured by the predictive model, leading to workflows
that propose molecules that are predicted to be optimal but underperform when tested experimentally.75

In contrast, there may be cases where it is useful to deliberately explore regions of chemical space that are
poorly understood by the predictive model.107,108 This may be valuable for applications where it is more important
to discover new molecules than to discover molecules that have a target set of properties. Additionally, this can be
particularly valuable for active learning applications. Active learning is an experimental strategy that involves iter-
atively selecting new experiments to perform with the goal of minimizing the cost of acquiring training data while
simultaneously maximizing the accuracy of the machine learned model. In an active learning setting, it would be
valuable to develop a generative model that deliberately proposes poorly predicted molecules that can be tested
experimentally and used as training data to improve predictor in additional training iterations. In the continuous
optimization case, this can easily be accomplished by adjusting the Bayesian optimization sampling function to
emphasize exploration. This can also be accomplished in either continuous or discrete optimization by treating
uncertainty as an explicit optimization objective.

3.4 | Common applied workflows for generative molecular design

As described earlier, there are a few examples of using generative models in real molecular discovery campaigns. The
most straightforward way to use generative models in a real application is to train a generator and predictor model on
an initial dataset, to discover a molecule or set of molecules, and to select a small number of molecules for experimental
testing (Figure 3, top). This approach has been powerful for designing dyes that absorb light at target wavelengths109 as
well as inhibitors for Janus kinase 3,110 the discoidin domain receptor,111 and a series of receptors associated with neu-
ropsychiatric function.112

One caveat to this approach, however, is that the low throughput nature of the experiments prevents extensive
experimental testing (each of the described studies only includes experimentally testing four or fewer generated mole-
cules for a given design target). Each generative model can often propose hundreds or thousands of lead molecules and
the molecules explored experimentally are often manually selected based on additional secondary properties. This man-
ual selection process can lead to final compounds that closely resemble the training set.113 In this way, using a genera-
tive model in a discovery campaign does not guarantee that a novel lead candidate can be straightforwardly identified
in an automated fashion. Rather, generative models can be used to propose large sets of candidate molecules that can
be manually down-selected to promising leads.

In addition to using generative models to simply discover molecules, one can use the data generated from
promising leads to retrain the predictor and generator models, thus “closing the loop” on molecular discovery
(Figure 3, bottom). This approach can be valuable for applications where the predictive model has been trained on
a limited dataset. While there are no examples of using generative modeling for experimental closed-loop discovery
of molecules, Chen and Gu114 recently illustrated the value of this approach for computationally designing mate-
rials with desirable mechanical properties. For this application, they circumvented the need to synthesize materials
by measuring properties using the finite element method (FEM) a relatively inexpensive computational approach.
While such computational methods are often less accurate than experimental methods, they provide opportunities
to develop closed-loop generative modeling approaches on model computational systems that can be later trans-
lated to experimental systems.

A key advance required to achieve closed loop experimental molecular discovery is the development of high
throughput experimental platforms capable of synthesizing and testing molecules. To this end, a number of platforms
have been developed that vary in terms of the flexibility of the synthesis and testing operations that they can perform.
Ultimately, the aim is for these platforms to be coupled with machine learning approaches to yield self-driving
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laboratories for molecular discovery. This advance will require integrating (1) generative models capable of molecular
discovery, (2) retrosynthesis models capable of predicting viable synthetic pathways, and (3) fully automated experi-
mental platforms capable of flexibly carrying out synthesis and testing operations. While such a system has not been
achieved, such a vision has been described elsewhere, and will likely come to fruition in the near future. For more
information about autonomous experimental platforms, we refer the reader to these excellent reviews articles.115,116

4 | FUTURE DIRECTIONS

4.1 | The future of benchmarks

As with many areas of machine learning, the trajectory of generative modeling has been historically governed by the
key benchmarks in the field. The existing set of benchmarks have been critical in guiding a wave of increasingly power-
ful generative models for molecular discovery, facilitating improvements along metrics such as validity, uniqueness,

Automated 
priori�za�on
& filtering

>104 molecules

~102 molecules

Genera�ve and 
predic�ve models

High throughput  
experimental pla�orm

>104  molecules

<4 molecules

Genera�ve and 
predic�ve models

Manual 
filtering

Current state

Closed-loop  discovery

FIGURE 3 Currently, in experimental applications, generative models have been used in single-pass workflows with manual filtering.

In the future, we are likely to see the integration generative models into closed-loop, autonomous discovery pipelines
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and diversity of generated molecules. Despite this, as others have suggested,117 many of the newest generative models
perform very well across these benchmarks, indicating that these benchmarks are no longer sufficient to evaluate which
models perform best. Importantly, these high-performing models do not necessarily have all of the attributes needed to
be directly employed in a real molecular discovery application, an observation that is supported by the relatively few
examples of real applications in the literature. Thus, there is a need to develop more meaningful benchmarks to facili-
tate the development of generative models that are more ideally designed to solve real world problems.

One of the challenges associated with developing such a set of benchmarks is that generative modeling criteria are
likely to vary from one application to another. An ideal set of benchmarks is one that contains metrics relevant to a
diverse range of applications while also encompassing most of the hurdles associated with using generative models for
molecular discovery. We expect that this set of benchmarks will include factors such as synthetic feasibility, safety and
handling, uncertainty quantification, and other considerations relevant to deploying generative models for real
applications.

4.2 | The future of representations

The past few years have seen many developments in generative models capable of learning from 2D molecular graphs
and 3D point clouds. These advances are valuable because they enable generative models to learn on more
information-rich representations that contain more information about the underlying physics of the molecule.118 But
there are still technical challenges associated with using these frameworks. Most 2D and 3D generative models are auto
regressive, meaning that they generate the graph or point cloud in an ordered fashion. Because molecules are
unordered by nature, models that impose a canonical ordering among atoms introduce additional bias into generative
models, potentially limiting their performance. In addition, most representations have been developed for small mole-
cules and cannot be easily used to describe large or chiral molecules. Finally, generative models that leverage 2D and
3D representations are more computationally expensive to train than simpler models, making them more difficult to
scale to larger molecules and/or larger datasets.

4.3 | Final thoughts

Within the last decade, deep generative modeling for molecular discovery has grown into a well-developed field. Gener-
ative modeling holds great promise as an automated approach for discovering novel chemistries capable of solving
many global crises. While many advances are still needed for generative modeling to achieve its full potential, we antic-
ipate that the current challenges will be solved in the coming years.

CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.

AUTHOR CONTRIBUTIONS
Camille Bilodeau: Conceptualization (equal); data curation (equal); formal analysis (equal); investigation (equal);
methodology (equal); validation (equal); writing – original draft (equal); writing – review and editing (equal).
Wengong Jin: Conceptualization (equal); data curation (equal); formal analysis (equal); investigation (equal); method-
ology (equal); writing – original draft (equal); writing – review and editing (equal). Tommi Jaakkola: Conceptualiza-
tion (equal); funding acquisition (equal); methodology (equal); project administration (equal); resources (equal);
validation (equal); writing – review and editing (equal). Regina Barzilay: Conceptualization (equal); funding acquisi-
tion (equal); methodology (equal); project administration (equal); resources (equal); supervision (equal); validation
(equal); writing – review and editing (equal). Klavs Jensen: Conceptualization (equal); funding acquisition (lead);
methodology (equal); project administration (equal); resources (equal); supervision (equal); writing – review and
editing (equal).

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

BILODEAU ET AL. 13 of 17

 17590884, 2022, 5, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1608 by U
niversity O

f G
eorgia L

ibraries, W
iley O

nline L
ibrary on [20/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ORCID
Klavs F. Jensen https://orcid.org/0000-0001-7192-580X

RELATED WIRES ARTICLES
Advances and challenges in deep generative models for de novo molecule generation

REFERENCES
1. Polishchuk PG, Madzhidov TI, Varnek A. Estimation of the size of drug-like chemical space based on GDB-17 data. J. Comput. Aided.

Mol. Des. 2013;27(8):675–679.
2. Reymond J-L, Awale M. Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Nerosci. 2012;

3:649–57.
3. Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, Golovanov S, Tatanov O, Belyaev S et al. Molecular sets (MOSES): a benchmarking

platform for molecular generation models. Front Pharmacol. 2020;11:565644.
4. Brown N, Fiscato M, Segler MHS, Vaucher AC. GuacaMol: benchmarking models for de novo molecular design. J Chem Inf Model.

2019;59(3):1096–1108.
5. Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering.

Science. 2018;361:360–5.
6. Xue D, Gong Y, Yang Z, Chuai G, Qu S, Shen A et al. Advances and challenges in deep generative models for de novo molecule genera-

tion. WIREs Comput Mol Sci. 2019;9:e1395.
7. Elton DC, Boukouvalas Z, Fuge MD, Chung PW. Deep learning for molecular design—a review of the state of the art. Mol Syst Des

Eng. 2019;4:828–49.
8. Schwalbe-Koda D, G�omez-Bombarelli R. Generative models for automatic chemical design. In: Schutt KT, Chmiela S, von Lilienfeld O,

Tkatchenko A, Tsuda K, Müller K-R, editors. Machine learning meets quantum physics. Cham: Springer International Publishing;
2020. p. 445–67.

9. Vanhaelen Q, Lin Y-C, Zhavoronkov A. The advent of generative chemistry. ACS Med Chem Lett. 2020;11:1496–505.
10. Alshehri AS, Gani R, You F. Deep learning and knowledge-based methods for computer-aided molecular design—toward a unified

approach: state-of-the-art and future directions. Comput Chem Eng. 2020;141:107005.
11. Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL. Quantifying the chemical beauty of drugs. Nat Chem. 2012;4:90–8.
12. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf

Model. 1988;28:31–6.
13. G�omez-Bombarelli R, Wei J, Duvenaud D, Hernandez-Lobato J-M, Sanchez-Lengeling B, Sheberla D et al. Automatic chemical design

using a data-driven continuous representation of molecules. ACS Cent Sci. 2018;4:268–76.
14. Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-novo design through deep reinforcement learning. J Chem. 2017;9:48.
15. Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv. 2018;4:eaap7885.
16. Kotsias P-C, Arus-Pous J, Chen H, Engkvist O, Tyrchan C, Bjerrum EJ. Direct steering of de novo molecular generation using descrip-

tor conditional recurrent neural networks (cRNNs). Nat Mach. 2020;2:254–65.
17. Segler MHS, Kogej T, Tyrchan C, Waller MP. Generating focused molecule libraries for drug discovery with recurrent neural networks.

ACS Cent Sci. 2018;4:120–31.
18. Kang S, Cho K. Conditional molecular design with deep generative models. J Chem Inf Model. 2019;59:43–52.
19. Alperstein Z, Cherkasov A, Rolfe JT. All SMILES variational autoencoder. 2019. arXiv preprint arXiv:1905.13343.
20. Arús-Pous J, Patronov A, Bjerrum EJ, Tyrchan C, Reymond J-L, Chen H et al. SMILES-based deep generative scaffold decorator for de-

novo drug design. J Chem. 2020;12:38.
21. Sepp H, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9:1735–80.
22. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. 2014. arXiv

preprint arXiv:1412.3555.
23. Kusner MJ, Paige B, Hern�andez-Lobato JM. Grammar variational autoencoder. ICML. 2017;70:1945–1954.
24. Dai H, Tian Y, Dai B, Skiena S, Song L. Syntax-directed variational autoencoder for structured data. 2018. arXiv preprint arXiv:

1802.08786.
25. Krenn M, Häse F, Nigam A, Friederich P, Aspuru-Guzik A. Self-referencing embedded strings (SELFIES): a 100% robust molecular

string representation. Mach Learn: Sci Technol. 2020;1:045024.
26. De Cao N, Kipf T. MolGAN: an implicit generative model for small molecular graphs. 2018. arXiv preprint arXiv:1805.11973.
27. Ma T, Chen J, Xiao C. Constrained generation of semantically valid graphs via regularizing Variational autoencoders. 2018. arXiv pre-

print arXiv:1809.02630.
28. Simonovsky M, Komodakis N. GraphVAE: towards generation of small graphs using variational autoencoders. ICANN. 2018;11139:

412–422.
29. You J, Liu B, Ying R, Pande V, Leskovec J. Graph convolutional policy network for goal-directed molecular graph generation. 2018.

arXiv preprint arXiv:1806.02473.
30. Li Y, Vinyals O, Dyer C, Pascanu R, Battaglia P. Learning deep generative models of graphs. arXiv:1803.03324 [cs.LG]. 2018.

14 of 17 BILODEAU ET AL.

 17590884, 2022, 5, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1608 by U
niversity O

f G
eorgia L

ibraries, W
iley O

nline L
ibrary on [20/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-7192-580X
https://orcid.org/0000-0001-7192-580X
https://doi.org/10.1002/wcms.1395


31. Samanta B, De A, Jana G, Chattaraj PK, Ganguly N, Rodriguez MG. NeVAE: a deep generative model for molecular graphs. AAAI.
2019;33:1110–7.

32. Liu Q, Allamanis M, Brockschmidt M, Gaunt A. Constrained graph variational autoencoders for molecule design. NeurIPS. 2018;31:
7632–7642.

33. Jin W, Barzilay R, Jaakkola T. Junction tree Variational autoencoder for molecular graph generation. ICML. 2018;80:2323–2332.
34. Jin W, Barzilay R, Jaakkola T. Hierarchical generation of molecular graphs using structural motifs. ICML. 2020;119:4839–4848.
35. Gebauer NWA, Gastegger M, Schütt KT. Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules.

NeurIPS. 2019;32:8600–8610.
36. Simm GNC, Pinsler R, Hern�andez-Lobato JM. Reinforcement learning for molecular design guided by quantum mechanics. ICML.

2020;119:8959–8969.
37. Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT. Conformer generation with OMEGA: algorithm and validation

using high quality structures from the protein databank and Cambridge structural database. J Chem Inf Model. 2010;50:572–84.
38. Riniker S. Molecular dynamics fingerprints (MDFP): machine learning from MD data to predict free-energy differences. J Chem Inf

Model. 2017;57:726–41.
39. Simm GNC, Hern�andez-Lobato JM. A generative model for molecular distance geometry. ICML. 2020;119:8949–8958.
40. Xu M, Luo S, Bengio Y, Peng J, Tang J. Learning neural generative dynamics for molecular conformation generation. 2021. arXiv pre-

print arXiv:2102.10240.
41. Ganea O-E, Pattanaik L, Coley CW, Barzilay R, Jensen KF, Green WH et al. GeoMol: torsional geometric generation of molecular 3D

conformer ensembles. 2021. arXiv preprint arXiv:2106.07802.
42. Axelrod S & Gomez-Bombarelli R GEOM: energy-annotated molecular conformations for property prediction and molecular genera-

tion; 2020. arXiv:2006.05531 [physics].
43. Ramakrishnan R, Dral PO, Rupp M, von Lilienfeld OA. Quantum chemistry structures and properties of 134 kilo molecules. Sci Data.

2014;1:140022.
44. Blei DM, Kucukelbir A, McAuliffe JD. Variational inference: a review for statisticians. J Am Stat Assoc. 2017;112:859–77.
45. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S et al. Generative adversarial networks. NeurIPS. 2014;27:

3276–3285.
46. Kingma DP, Welling M. Auto-encoding variational bayes. 2014. arXiv preprint arXiv:1312.6114.
47. Kwon Y, Yoo J, Choi Y-S, Son W-J, Lee D, Kang S. Efficient learning of non-autoregressive graph variational autoencoders for molecu-

lar graph generation. J Chem. 2019;11:70.
48. Assouel R, Ahmed M, Segler MH, Saffari A, Bengio Y DEFactor: differentiable edge factorization-based probabilistic graph generation;

2018. arXiv:1811.09766 [cs].
49. Brock A, Donahue J, Simonyan K. Large scale GAN training for high fidelity natural image synthesis. 2018. arXiv preprint arXiv:

1809.11096.
50. Pölsterl S, Wachinger C. Adversarial learned molecular graph inference and generation. ECML. 2019;33(5):173–189.
51. Prykhodko O, Johansson S. V, Kotsias P.-C, Arus-Pous J, Bjerrum E. J, Engkvist O et al. A de novo molecular generation method using

latent vector based generative adversarial network. J Chem. 2019;11:74.
52. Rivas P, Guarino M, Shah A. DiPol-GAN: Generating Molecular Graphs Adversarially with Relational Differentiable Pooling. https://

www.rivas.ai/pdfs/guarino2019dipol.pdf
53. Guimaraes GL, Sanchez-Lengeling B, Outeiral C, Farias PLC, Aspuru-Guzik A Objective-reinforced generative adversarial networks

(ORGAN) for sequence generation models; 2018. arXiv:1705.10843 [cs, stat].
54. Zang C, Wang F. MoFlow: an invertible flow model for generating molecular graphs. KDD. 2020;22:617–626.
55. Shi C, Xu M, Zhu Z, Zhang W, Zhang M, Tang J. GraphAF: a flow-based autoregressive model for molecular graph generation. 2020.

arXiv preprint arXiv:2001.09382.
56. Madhawa K, Ishiguro K, Nakago K, Abe M GraphNVP: an invertible flow model for generating molecular graphs; 2019. arXiv:

1905.11600 [cs, stat].
57. Shi C, Luo S, Xu M, Tang J. Learning gradient fields for molecular conformation generation. ICML. 2021;139:9558–9568.
58. Bradshaw J, Paige B, Kusner MJ, Segler MHS, Hern�andez-Lobato JM. Barking up the right tree: an approach to search over molecule

synthesis DAGs. NeurIPS. 2020;33:6852–6866.
59. Bradshaw J, Paige B, Kusner MJ, Segler MHS, Hern�andez-Lobato JM. A model to search for synthesizable molecules. NeurIPS. 2019;

32:12000–12010.
60. Mendez D, Gaulton A, Bento A. P, Chambers J, De Veji M, Felix E et al. ChEMBL: towards direct deposition of bioassay data. Nucleic

Acids Res. 2019;47:D930–40.
61. Irwin JJ, Shoichet BK. ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2006;

45(1):177–82.
62. Zhou Z, Kearnes S, Li L, Zare RN, Riley P. Optimization of molecules via deep reinforcement learning. Sci Rep. 2019;9:10752.
63. Griffiths R-R, Hern�andez-Lobato JM. Constrained Bayesian optimization for automatic chemical design using variational autoencoders.

Chem Sci. 2020;11:577–86.
64. Nigam A, Friederich P, Krenn M, Aspuru-Guzik A. Augmenting genetic algorithms with deep neural networks for exploring the chemi-

cal space. 2020. arXiv preprint arXiv:1909.11655.

BILODEAU ET AL. 15 of 17

 17590884, 2022, 5, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1608 by U
niversity O

f G
eorgia L

ibraries, W
iley O

nline L
ibrary on [20/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.rivas.ai/pdfs/guarino2019dipol.pdf
https://www.rivas.ai/pdfs/guarino2019dipol.pdf


65. Ahn S, Kim J, Lee H, Shin J. Guiding deep molecular optimization with genetic exploration. NeurIPS. 2020;33:12008–12021.
66. Besnard J, Ruda GF, Setola V, Abecassis K, Huang X-P, Norval S et al. Automated design of ligands to polypharmacological profiles.

Nature. 2013;492(7428):215–220.
67. Jin W, Yang K, Barzilay R, Jaakkola T. Learning multimodal graph-to-graph translation for molecular optimization. 2019. arXiv pre-

print arXiv:1812.01070.
68. Langevin M, Minoux H, Levesque M, Bianciotto M. Scaffold-constrained molecular generation. J Chem Inf Model. 2020;60(12):

5637–46.
69. Li Y, Hu J, Wang Y, Zhou J, Zhang L, Liu Z. DeepScaffold: a comprehensive tool for scaffold-based de novo drug discovery using deep

learning. J Chem Inf Model. 2020;60:77–91.
70. Jin W, Barzilay R, Jaakkola T. Multi-objective molecule generation using interpretable substructures. ICML. 2020;119:4849–4859.
71. Podda M, Bacciu D, Micheli A. A deep generative model for fragment-based molecule generation. AISTATS. 2020;108:2240–2250.
72. Imrie F, Bradley AR, van der Schaar M, Deane CM. Deep generative models for 3D linker design. J Chem Inf Model. 2020;60:1983–95.
73. Green H, Koes DR, Durrant JD. DeepFrag: a deep convolutional neural network for fragment-based lead optimization. Chem Sci. 2021;

12:8036–47.
74. Zhang J, Mercado R, Engkvist O, Chen H. Comparative study of deep generative models on chemical space coverage. J Chem Inf

Model. 2021;61(6):2572–81.
75. Renz P, Van Rompaey D, Wegner JK, Hochreiter S, Klambauer G. On failure modes in molecule generation and optimization. Drug

Discov Today Technol. 2019;32–33:55–63.
76. Walters P rd_filters. https://github.com/PatWalters/rd_filters. Accessed 10 Sep 2021.
77. Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M. On the art of compiling and using ‘drug-like’ chemical fragment spaces. Chem

Med Chem. 2008;3:1503–7.
78. Bemis GW, Murcko MA. The properties of known drugs. 1. Molecular frameworks. J Med Chem. 1996;39:2887–93.
79. Preuer K, Renz P, Unterthiner T, Hochreiter S, Klambauer G. Fréchet ChemNet distance: a metric for generative models for molecules

in drug discovery. J Chem Inf Model. 2018;58:1736–41.
80. Fu T, Xiao C, Li X, Glass LM, Sun J. MIMOSA: multi-constraint molecule sampling for molecule optimization. 2021. arXiv preprint

arXiv:2010.02318.
81. He C, Huang S, Cheng R, Tan KC, Jin Y. Evolutionary multiobjective optimization driven by generative adversarial networks (GANs).

IEEE Trans Cybern. 2021;51:3129–42.
82. Domenico A, Nicola G, Daniela T, Fulvio C, Nicola A, Orazio N. De novo drug design of targeted chemical libraries based on artificial

intelligence and pair-based multiobjective optimization. J Chem Inf Model. 2020;60:4582–93.
83. Xie Y, Shi C, Zhou H, Yang Y, Zhang W, Yu Y et al. MARS: Markov molecular sampling for multi-objective drug discovery. 2021. arXiv

preprint arXiv:2103.10432.
84. Shin B, Park S, Bak J, Ho JC. Controlled molecule generator for optimizing multiple chemical properties. CHIL. 2021;1:146–153.
85. Lim J, Hwang S-Y, Kim S, Moon S, Kim WY. Scaffold-based molecular design using graph generative model. Chem Sci. 2020;11:

1153–64.
86. Yang Y, Zheng S, Su S, Zhao C, Xu J, Chen H. SyntaLinker: automatic fragment linking with deep conditional transformer neural net-

works. Chem Sci. 2020;11:8312–22.
87. Polishchuk P. CReM: chemically reasonable mutations framework for structure generation. J Chem. 2020;12:28.
88. Chen Z, Min MR, Parthasarathy S, Ning X. Molecule optimization via fragment-based generative models. Nat Mach. 2021;3:1040–9.
89. Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment

contributions. J Chem. 2009;1:8.
90. Fukunishi Y, Kurosawa T, Mikami Y, Nakamura H. Prediction of synthetic accessibility based on commercially available compound

databases. J Chem Inf Model. 2014;54:3259–67.
91. Coley CW, Rogers L, Green WH, Jensen KF. SCScore: synthetic complexity learned from a reaction corpus. J Chem Inf Model. 2018;58:

252–61.
92. Thakkar A, Chadimova V, Bjerrum EJ, Engkvist O, Reymond J-L, et al. Retrosynthetic accessibility score (RAscore)—rapid machine

learned synthesizability classification from AI driven retrosynthetic planning. Chem Sci. 2021;12:3339–3349.
93. Gao W, Coley CW. The synthesizability of molecules proposed by generative models. J Chem Inf Model. 2018;58:252–61.
94. Button A, Merk D, Hiss JA, Schneider G. Automated de novo molecular design by hybrid machine intelligence and rule-driven

chemical synthesis. Nat Mach. 2019;1:307–15.
95. Korovina K, Xu S, Kandasamy K, Neiswanger W, Poczos B, Schneider J, et al. ChemBO: Bayesian optimization of small organic mole-

cules with synthesizable recommendations. AISTATS. 2019;108:3393–3403.
96. Horwood J, Noutahi E. Molecular design in synthetically accessible chemical space via deep reinforcement learning. ACS Omega.

2020;5:32984–94.
97. Gottipati SK, Sattarov B, Niu S, Pathak Y, Wei H, Liu S, et al. Learning to navigate the synthetically accessible chemical space using

reinforcement learning. PMLR. 2020;119:3668–3679.
98. Mervin LH, Johansson S, Semenova E, Giblin KA, Engkvist O. Uncertainty quantification in drug design. Drug Discov Today. 2021;

26(2):474–89.

16 of 17 BILODEAU ET AL.

 17590884, 2022, 5, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1608 by U
niversity O

f G
eorgia L

ibraries, W
iley O

nline L
ibrary on [20/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/PatWalters/rd_filters


99. Walters WP, Barzilay R. Applications of deep learning in molecule generation and molecular property prediction. Acc Chem Res. 2021;
54:263–70.

100. Scalia G, Grambow CA, Pernici B, Li Y-P, Green WH. Evaluating scalable uncertainty estimation methods for deep learning based
molecular property prediction. J Chem Inf Model. 2020;60(6):2697–717.

101. Hie B, Bryson B, Berger B. Learning with uncertainty for biological discovery and design. Cell Syst. 2020;11:461–77.
102. Ryu S, Kwon Y, Kim WY Uncertainty quantification of molecular property prediction with Bayesian neural networks; 2019. arXiv:

1903.08375 [cs, stat].
103. Ovadia Y, Fertig E, Ren J, Rado Z, Sculley D, Nowozin S, et al. Can you trust your model's uncertainty? Evaluating predictive uncer-

tainty under dataset shift. 2019. arXiv preprint arXiv:1906.02530.
104. Hirschfeld L, Swanson K, Yang K, Barzilay R, Coley CW. Uncertainty quantification using neural networks for molecular property pre-

diction. J Chem Inf Model. 2020;60(8):3770–80.
105. Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive uncertainty estimation using deep ensembles. 2017. arXiv

preprint arXiv:1612.01474.
106. Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. ICML. 2016;48:1050–

1059.
107. Thiede LA, Krenn M, Nigam A, Aspuru-Guzik A. Curiosity in exploring chemical space: intrinsic rewards for deep molecular reinforce-

ment learning. 2020. arXiv preprint arXiv:2012.11293.
108. Shen C, Krenn M, Eppel S, Aspuru-Guzik A. Deep molecular dreaming: inverse machine learning for de-novo molecular design and

interpretability with surjective representations. Mach Learn Sci Technol. 2021;2:3.
109. Sumita M, Yang X, Ishihara S, Tamura R, Tsuda K. Hunting for organic molecules with artificial intelligence: molecules optimized for

desired excitation energies. ACS Cent Sci. 2018;4:1126–33.
110. Polykovskiy D, Zhebrak Z, Vetrov D, Ivanenkov Y, Aladinskiy V, Mamoshina P et al. Entangled conditional adversarial autoencoder

for de novo drug discovery. Mol Pharm. 2018;15(10):4398–4405.
111. Zhavoronkov A. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37:1038–40.
112. Tan X, Jiang X, He Y, Zhong F, Li X, Li Z et al. Automated design and optimization of multitarget schizophrenia drug candidates by

deep learning. Eur J Med Chem. 2020;204:112572.
113. Walters P. Assessing the impact of generative AI on medicinal chemistry. Nat Biotechnol. 2020;38:142–50.
114. Chen C-T, Gu GX. Generative deep neural networks for inverse materials design using backpropagation and active learning. Adv Sci.

2020;7:1902607.
115. Dimitrov T, Kreisbeck C, Becker JS, Aspuru-Guzik A, Saikin SK. Autonomous molecular design: then and now. ACS Appl Mater Inter-

faces. 2019;11:24825–36.
116. Soldatov M. A, Butova V. V, Pashkov D, Butakova M. A, Medvedev P. V, Chernov A. V et al. Self-driving laboratories for development

of new functional materials and optimizing known reactions. J Nanomater. 2021;11:619.
117. Nigam A, Pollice R, Krenn M. Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery

(STONED) algorithm for molecules using SELFIES. Chem Sci. 2021;12:7079–7090.
118. Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. Physics-informed machine learning. Nat Rev Phys. 2021;3:422–40.

How to cite this article: Bilodeau C, Jin W, Jaakkola T, Barzilay R, Jensen KF. Generative models for
molecular discovery: Recent advances and challenges. WIREs Comput Mol Sci. 2022;12:e1608. https://doi.org/10.
1002/wcms.1608

BILODEAU ET AL. 17 of 17

 17590884, 2022, 5, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1608 by U
niversity O

f G
eorgia L

ibraries, W
iley O

nline L
ibrary on [20/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/wcms.1608
https://doi.org/10.1002/wcms.1608

	Generative models for molecular discovery: Recent advances and challenges
	1  INTRODUCTION
	2  BACKGROUND
	2.1  Representation of molecules
	2.1.1  One-dimensional representations
	2.1.2  Two-dimensional representations
	2.1.3  Three-dimensional representations

	2.2  Model architectures
	2.2.1  Variational autoencoders
	2.2.2  Generative adversarial networks
	2.2.3  Normalizing flow models
	2.2.4  Miscellaneous

	2.3  Formulating the molecular generation problem
	2.3.1  Unconstrained molecular generation
	2.3.2  Property-constrained molecular generation
	2.3.3  Structure-constrained molecular generation

	2.4  Benchmarks for generative models for molecular design
	2.4.1  Unconstrained molecular generation benchmarks
	2.4.2  Goal-directed molecular generation benchmarks


	3  PRACTICAL CONSIDERATIONS FOR GENERATING MOLECULES FOR SPECIFIC APPLICATIONS
	3.1  Real molecular design problems are generally multi-objective in nature
	3.1.1  Explicit multi-objective optimization
	3.1.2  Structure-guided multi-objective optimization

	3.2  Molecules designed using generative models must be synthesizable
	3.3  Generative modeling workflows rely on predictive models with limited certainty
	3.4  Common applied workflows for generative molecular design

	4  FUTURE DIRECTIONS
	4.1  The future of benchmarks
	4.2  The future of representations
	4.3  Final thoughts

	CONFLICT OF INTEREST
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT

	REFERENCES


